《多边形的内角和》教学设计

时间:2024-03-30 03:12:07
《多边形的内角和》教学设计

《多边形的内角和》教学设计

作为一名老师,就有可能用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?以下是小编为大家收集的《多边形的内角和》教学设计,希望对大家有所帮助。

《多边形的内角和》教学设计1

教学过程

(一)创设问题情境,引出新课。

1、以疑导入,引发求知欲。先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。

引题:我们学校要准备建造一个各边长为5米,各内角都相等的十二边形花坛。问各角是多少度?

2、复习提问,知识巩固。

⑴三角形内角和等于多少度?

⑵四边形内角和定理以及推导方法。

3、引入新课

上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。

(二)引导探索,研讨新知

1、以动激趣,浅探求知。

一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。

二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。

三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。

2、观察联想,启迪思维。

(三)回顾小结, ……此处隐藏4000个字……和之间的关系,

多边形边数可分成三角形的个数多边形的内角和56 7┅┅┅┅n边形n

n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?

预设回答:有n个内角,可以转化多个三角形来求,n边形可以引n-3条对角线,即有n-2个三角形。所有n边形的内角和等于(n-2)x180°

【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.

例:教材第36页例1

【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.

三、课堂演练

1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()

A.十三边形B.十二边形

C.十一边形D.十边形

2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。

【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.

四、课时小结

1、这节课你有什么新的收获?

五、布置作业:

教材第36页练习1、2题。

六、板书设计多边形的内角和n边形内角和等于(n-2)×180°。

多边形的内角和是180的倍数;

边数越多,内角和就越大;

每增加一条边,内角和就增加180度。

《《多边形的内角和》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式